American University of Beirut MATH 202

Differential Equations
Spring 2010

PUT YOUR SECTION'S NUMBER ON YOUR BOOKLET PLEASE:

13 (T 11) 14 (T 12:30) 15 (T 5) 16 (T 9:30)

Exercise 1 Find the general solution of the given differential equation (do not find the constants)

- a) $y'' 2y' 3y = (x^2 + 1)e^{-x}$
- b) $y''' + 3y'' + 4y' + 12y = e^{3x} + \cos(2x)$
- c) $y^{(8)} 16y^{(4)} = 3x + 1 + x^2e^{-2x} + e^{x}\cos(3x)$

Exercise 2 Solve the initial-value problem

$$x^2 \frac{dy}{dx} - 2xy = 3y^4$$
, $y(1) = \frac{1}{2}$

give the largest interval I on which the solution is defined.

Exercise 3 Use an appropriate substitution to solve

$$xy' = y\ln(xy)$$

Exercise 4 Solve the DE

$$y'' - 2y' + y = \frac{e^x}{1 + x^2}$$

by variation of parameters.

Exercise 5 Consider the DE

$$(E): x^4y'' + x^3y' - 4x^2y = 1$$

- a. Check that $y_1 = x^2$ is a solution of the associated homogeneous equation.
- b. Let $y_2 = x^2 u(x)$. Show that u satisfies a first order DE, then solve it.
- c. Give the general solution of (E) on $]0, +\infty[$. (clearly indicates y_c and y_p)